geometry---maths

2010-11-19 8:47 am
Show that (0,0) lies inside the circle (x-5)^2+(y+2)^2=30

回答 (2)

2010-11-19 10:18 am
✔ 最佳答案
(x - 5)^2 + (y + 2)^2 = 30Center is (5 , - 2)
Radius = √30The distance between the center (5 , - 2) and (0 , 0) is :√ [ (5 - 0)^2 + (- 2 - 0)^2 ]= √29 which is less than radius = √30Hence (0,0) lies inside the circle (x - 5)^2 + (y + 2)^2 = 30
2010-11-20 12:51 am


Another more easier way:

( 0 - 5 )^2 + ( 0 - 2 )^
= 5^2 + 2^2
= 29
< 30

Hence, the Origin lies inside the circle.
參考: Mathematics Teacher Mr. Ip


收錄日期: 2021-04-21 22:24:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101119000051KK00055

檢視 Wayback Machine 備份