一題空間向量的問題

2010-11-19 12:24 am
請教一題空間向量的問題
Let S be the set of all symmetric 3*3 matrices such that (1,1,1)S=(0,0,0).
(a)Prove that S is a vector space.
(b)What is the dimension of S ? Please find a basis for it.
多謝了!
更新1:

(a)最後一式不明白 為何(1,1,1)(xM+yN) =x(1,1,1)M+y(1,1,1)N =(0,0,0) 0向量為S的元素 所以S為向量空間?

回答 (1)

2010-11-19 12:56 am
✔ 最佳答案
(a) Let M and N be the elements of S. Then
(1,1,1)(xM+yN)
=x(1,1,1)M+y(1,1,1)N
=(0,0,0)
Also, the zero matrix O is an element of S. So, S is a vector space.

(b) Consider the structure of S
a b c
b e f
c f i

By (1,1,1)S=(0,0,0). we have a+b+c=0, b+e+f=0, c+f+i=0

That is c=-a-b,e=-b-f,i=a+b-f. This implies that row three can be obtained by row one plus row two. On the other hand, it is obvious that row one and two are independent. So, the dimension of S should be 2.


收錄日期: 2021-04-26 14:04:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101118000010KK04149

檢視 Wayback Machine 備份