help!! 解不等式...

2010-11-16 5:58 am
-x^4 -2x^3 + x^2 + 2x > 0
更新1:

- x(x^3 + 2x^2 - x - 2) > 0 <-----------(1) x(x - 1)(x + 1)(x + 2) < 0 <------------(2) 最主要我想知,點由(1)想到(2)

回答 (3)

2010-11-16 6:24 am
✔ 最佳答案
-x^4 -2x^3 + x^2 + 2x > 0
- x(x^3 + 2x^2 - x - 2) > 0
x(x - 1)(x + 1)(x + 2) < 0
--- (+) -------(-2)------( - )------(-1)------(+)------(0)------( - )------(1)故 - 2 < x < - 1 或 0 < x < 1


2010-11-15 22:26:18 補充:
----- (+) -------(-2)------( - )------(-1)------(+)------(0)------( - )------(1)-------(+)------

2010-11-15 23:20:24 補充:
x^3 + 2x^2 - x - 2

x^3 係數 是 1 , 三個因式是 (x - ?) (x - ?) (x - ?)

- 2 的因數是 ± 1 , ± 2

因式只可能是 (x ± 1) , (x ± 2) , 一試就出來了。

2010-11-15 23:24:36 補充:
- x(x^3 + 2x^2 - x - 2)

= - x(x^3 + x^2 + x^2 - x - 2)

= - x[(x^2)(x + 1) + (x + 1)(x - 2)]

= - x(x + 1)(x^2 + x - 2)

= - x(x + 1)(x - 1)(x + 2)
2010-11-16 6:17 pm
-x^4 -2x^3 + x^2 + 2x > 0 - x(x^3 + 2x^2 - x - 2) > 0 x(x - 1)(x + 1)(x + 2) < 0 --- (+) -------(-2)------( - )------(-1)------(+)------(0)------( - )------(1) 故 - 2 < x < - 1 或 0 < x < 1

2010-11-16 10:18:31 補充:
----- (+) -------(-2)------( - )------(-1)------(+)------(0)------( - )------(1)-------(+)------
參考: me or my teacher, http://www.comingzoo.com http://www.pf23.com
2010-11-16 6:14 pm
-x^4 -2x^3 + x^2 + 2x > 0


- x(x^3 + 2x^2 - x - 2) > 0


x(x - 1)(x + 1)(x + 2) < 0


--- (+) -------(-2)------( - )------(-1)------(+)------(0)------( - )------(1)

故 - 2 < x < - 1 或 0 < x < 1
參考: me


收錄日期: 2021-04-21 22:18:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101115000051KK01608

檢視 Wayback Machine 備份