Ordinary differential equation

2010-11-08 9:05 am

回答 (1)

2010-11-08 10:47 am
✔ 最佳答案
d^2y/dt - 3dy/dt + 2y = 4e^(2t)
Integrate both sides wrt t :
dy/dt - 3y + 2ty = 2e^(2t) + C
5 - 3(-3) +2(0)(-3) = 2e^(2x0) (since y'(0)=5 y(0)=-3)
C = 12

Therefore,
dy/dt - 3y + 2ty = 2e^(2t) + 12
Integrate both sides wrt t again :
y - 3ty + yt^2 = e^(2t) + 12t + D
-3 - 3(0)(-3) + (-3)(0)^2 = e^(2x0) + 12(0) + D
D = -4

Therefore
y - 3ty + t^2y = e^(2t) +12t -4
y = [e^(2t) +12t -4]/(1-3t+t^2)


收錄日期: 2021-04-27 13:52:09
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101108000051KK00084

檢視 Wayback Machine 備份