中一 Mathematic 發問,請幫幫手!(10點)

2010-11-06 8:38 pm
以下一題。請幫忙!很急的!

不要只給予答案,要解法,因為。。。什麼。

In the figure, the 1st pattern consists of 3 dots. For any positive integer n, the (n+1)th pattern is formed by adding (3n+3) dots to the n th pattern. Find the number of dots in the 6th pattern.

唔該晒~

回答 (2)

2010-11-06 11:12 pm
✔ 最佳答案
以下一題。請幫忙!很急的!不要只給予答案,要解法,因為。。。什麼。In the figure, the 1st pattern consists of 3 dots. For any positive integer n, the (n+1)th pattern is formed by adding (3n+3) dots to the n th pattern. Find the number of dots in the 6th pattern.A. T(6) = (3*(6-1)+3)+(3*(5-1)+3)+(3*(4-1)+3)+(3*(3-1)+3)+(3*(2-1)+3)+(3*(1-1)+3)= 3*5+3 +3*4+3 +3*3+3 +3*2+3 +3*1+3 +3*0+3= 3(5+4+3+2+1+0)+3*6= 3(5)(5+1)/2+3*6---------------1+2+...+n = n(n+1)/2--------Here, n = 5= 3*5*6/2 +3*6= 3*5*3+3*6= 3(5*3+6)= 3*21= 63唔該晒~

2010-11-06 15:16:43 補充:
In the figure, the 1st pattern consists of 3 dots. For any positive integer n, the (n+1)th pattern is formed by adding (3n+3) dots to the n th pattern. Find the number of dots in the 6th pattern.

2010-11-06 15:16:50 補充:
A. T(6)
= (3*(6-1)+3)+(3*(5-1)+3)+(3*(4-1)+3)+(3*(3-1)+3)+(3*(2-1)+3)+(3*(1-1)+3)
= 3*5+3 +3*4+3 +3*3+3 +3*2+3 +3*1+3 +3*0+3
= 3(5+4+3+2+1+0)+3*6
= 3(5)(5+1)/2+3*6---------------1+2+...+n = n(n+1)/2--------Here, n = 5
= 3*5*6/2 +3*6
= 3*5*3+3*6
= 3(5*3+6)
= 3*21
= 63
參考: Myself
2010-11-08 4:50 am
在圖中,第一模式由3個點。對於正整數 n,第(n +1)個圖案是由添加(3晚3)點到N次模式。求數點在50-59格局

2010-11-07 20:51:04 補充:
= (3*(6-1)+3)+(3*(5-1)+3)+(3*(4-1)+3)+(3*(3-1)+3)+(3*(2-1)+3)+(3*(1-1)+3)
= 3*5+3 +3*4+3 +3*3+3 +3*2+3 +3*1+3 +3*0+3
= 3(5+4+3+2+1+0)+3*6
= 3(5)(5+1)/2+3*6---------------1+2+...+n = n(n+1)/2--------Here, n = 5
= 3*5*6/2 +3*6
= 3*5*3+3*6
= 3(5*3+6)
= 3*21
= 63


收錄日期: 2021-04-16 12:00:29
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101106000051KK00453

檢視 Wayback Machine 備份