F.5 MATHS

2010-10-24 11:51 pm
F.5 MATHS.........................................................


圖片參考:http://imgcld.yimg.com/8/n/HA00002921/o/701010240088413873379770.jpg

回答 (1)

2010-10-25 12:18 am
✔ 最佳答案
Let ∠OEC = a and ∠OCE = b

By the property of tangent of circle, EO bisects ∠AEC.
∠OEA = ∠OEC = a
Hence, ∠AEC = ∠OEA + ∠OEC = 2a

Similarly, CO bisects ∠BCE.
∠OCB = ∠OCE = b
Hence, ∠BCE = ∠OCB + ∠OCE = 2b

∠AEC + ∠BCE = 180° (int. ∠s, AE // BC)
2a + 2b = 180°
a + b = 90°

In ΔOEC:
∠EOC + ∠OEC + ∠OCE = 180° (∠ sum of Δ)
∠EOC + a + b = 180°
∠EOC + 90° = 180°
∠EOC = 90°
參考: 土扁


收錄日期: 2021-04-13 17:35:43
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101024000051KK00884

檢視 Wayback Machine 備份