✔ 最佳答案
Let f(x)=x^6-x^5-2x^4+x^3+x^2+1
f(x)
=(x^2-1)(x^4-x^3-x^2)+1
=(x^2-1)(x^2-x-1)(x^2)+1
=(x^2-1)(x^2-x+(1/2)^2-(1/2)^2-1)(x^2)+1
=(x^2-1)((x-1/2)^2-3/4)(x^2)+1
if x<0
x^2-1>=0
(x-1/2)^2-3/4>-1/2
x^2>=0
if x^2-1 and x^2 are also equal to 0
the smallest value of (x^2-1)((x-1/2)^2-3/4)(x^2) is -1/2
So the smallest value of f(x) is 1>0
if x=0
x^2-1=-1
x^2-x-1=-1
x^2=0
the value is (-1)(-1)(0)+1=1>0
if x>0
x^2-1>=0
((x-1/2)^2-3/4)>-1/2
So the smallest value of f(x) is 1>0
So x^6-x^5-2x^4+x^3+x^2+1>0
2010-10-24 10:45:13 補充:
actually simplify x^6-x^5-2^4+x^3+x^2+1
and find the properties of each brackets
but可能有誤....有咩疑問再問la~~~~