有d數學問題唔識想向大家請教3 - 後傳

2010-10-16 1:02 am
唔該大家幫幫手><

證明 (1+e)^2 / 2e = 2 + 1/2! + 1/4! + 1/6! + ...

回答 (2)

2010-10-16 3:29 am
✔ 最佳答案
證明(1+e)^2/(2e)=2+1/2!+1/4!+1/6!+…
Sol
e^x=Σ(k=0 to ∞)_x^k/k!
e^(-1)= Σ(k=0 to ∞)_(-1)^k/k!
e=Σ(k=0 to ∞)_(1)^k/k!
(1+e)^2/e
=(1+2e+e^2)/e
=2+e^(-1)+e
=2+Σ(k=0 to ∞)_(-1)^k/k!+Σ(k=0 to ∞)_(1)^k/k!
=2+Σ(k=0 to ∞)_[(-1)^k+(1)^k]/k!
=2+[(-1)^0+(1)^0]/0!+Σ(k=1to ∞)_[(-1)^k+(1)^k]/k!
=4+Σ(k=1 to ∞)_[(-1)^k+(1)^k]/k!
=4+Σ(m=1 to ∞)_[(-1)^(2m)+(1)^(2m)]/(2m)!
+Σ(m=1 to ∞)_[(-1)^(2m+1)+(1)^(2m+1)]/(2m+1)!
=4+Σ(m=1 to ∞)_(1+1)/(2m)!+Σ(m=1 to ∞)_(-1+1)/(2m+1)!
=4+Σ(m=1 to ∞)_(1+1)/(2m)!
=4+2/2!+2/4!+2/6!+….
So
(1+e)^2/(2e)=2+1/2!+1/4!+1/6!+..


2010-10-16 1:24 am
123123123123123

2010-10-15 17:27:15 補充:
我是新手, 想試一試, 所以就亂click了, sorry ......

2010-10-15 17:30:24 補充:
sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ....sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......

2010-10-15 17:30:37 補充:
sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ....sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry

2010-10-15 17:30:45 補充:
sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ....sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry

2010-10-15 17:31:05 補充:
sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ....sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry

2010-10-15 17:31:11 補充:
sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ....sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry

2010-10-15 17:31:25 補充:
sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ....sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry ......sorry
參考: 123, me, me, me, me, me, me, me


收錄日期: 2021-04-29 00:06:11
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101015000051KK00799

檢視 Wayback Machine 備份