pure難題一問

2010-10-13 10:44 am
given {a(n)} is a sequence which defined by
a(1)=1 and a(2)=3 AND
a(n+2)=a(n+1)+a(n)

without using mathematical induction
PROVE that a(n)<(7/4)^n
for n=1,2,3,......
更新1:

已知a(n)=[(1+√5)/2]^n+[(1-√5)/2]^n,跟住prove a(n)<(7/4)^n

回答 (2)

2010-10-13 5:52 pm
✔ 最佳答案
given {a(n)} is a sequence which defined bya(1)=1 and a(2)=3 and
a(n+2)=a(n+1)+a(n) without using mathematical induction
prove that a(n)<(7/4)^n for n=1,2,3,.....
Sol
a(n+2)=a(n+1)+an
E^2=E+1
E^2-E-1=0
E=(1+/-√5)/2
S=(1+√5)/2,T=(1-√5)/2
S-T=√5
a(n)=p*S^n+q*T^n
a(n+2)=a(n+1)+a(n)
a(2)=a(1)+a(0)
a(0)=a(2)-a(1)=3-1=2
a(0)=2=p+q
a(1)=1=pS+qT
S(p+q)-(pS+qT)=2S-1
q(S-T)=2S-1
q*√5=√5
q=1,p=1
a(n)=[(1+√5)/2]^n+[(1-√5)/2]^n
~1.618^n+(-0.618)^n
<1.75^n
=(7/4)^n
So
a(n)<(7/4)^n


2010-10-13 10:24 pm
當n為偶數時,證明時不應這樣簡單?


收錄日期: 2021-04-23 23:24:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101013000051KK00129

檢視 Wayback Machine 備份