MATH QUESTION CIRCLES 4

2010-10-12 4:42 am

圖片參考:http://imgcld.yimg.com/8/n/HA00610265/o/701010110125213873376900.jpg


IN THE FOLLOWING FIGURE, O is the centre.

16. In the figure, AB is a diameter. PB and PC are the tangents to the circle at B and C respectively.

Prove that AC//OP.

回答 (1)

2010-10-12 4:57 am
✔ 最佳答案
PO = PO (common)
OC = OB (radius)
ㄥPCO = ㄥPBO = 90° (tangent⊥radius)△POC =~= △POB (R.H.S.)We let ㄥPOC = ㄥPOB = x ,then ㄥCOA = 180° - 2x ,ㄥACO = (180° - ㄥCOA)/2 = (180 - (180° - 2x ))/2 = x= ㄥPOCHence AC//OP (alt.∠s equal)


收錄日期: 2021-04-21 22:16:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101011000051KK01252

檢視 Wayback Machine 備份