✔ 最佳答案
1.
方程式的兩根為 √5 - 4 及 - √5 - 4
x = -4 + √5 或 x = -4 - √5
x - (-4 + √5) = 0 或 x - (-4 - √5) = 0
[x - (-4 + √5)] [x - (-4 - √5)] = 0
x² - [(-4 + √5) + (-4 - √5)] + (-4 + √5)(-4 - √5) = 0
x² - [-4 + √5 + -4 - √5] + [(-4)² - (√5)²] = 0
x² + 8x + 11 = 0
----------
2.
方程式的兩根為 (2 + √11)/3 及 (2 - √11)3
x = (2 + √11)/3 或 x = (2 - √11)/3
x - (2 + √11)/3 = 0 或 x - (2 - √11)/3 = 0
3x - (2 + √11) = 0 或 3x - (2 - √11) = 0
[3x - (2 + √11)] [3x - (2 - √11)] = 0
9x² - 3x[(2 + √11) + (2 - √11)] + (2 + √11)(2 - √11) = 0
9x² - 3x(2 + √11 + 2 - √11) + [(2)² - (√11)²] = 0
9x² - 12x - 7 = 0
----------
3.
(a)
α和 β 是二次方程 x² + x - 5 = 0 的根
α + β = -1
αβ = -5
(i)
( α - 1 ) + ( β - 1 )
= (α + β) - 2
= -1 - 2
= -3
(ii)
(α - 1)(β - 1)
= αβ - (α + β) + 1
= (-5) - (-1) + 1
= -3
(b)
由(a):
兩根之和 = -3
兩根之積 = -3
所求方程式: x² + 3x - 3 = 0
----------
4.
α 和 β 是二次方程 x² - 5x - 3 = 0 的根
α + β = 5
αβ = -3
(a)
3α + 3β
= 3(α + β)
= 3(5)
= 15
(3α)(3β)
= 9αβ
= 9(-3)
= -27
所求方程式: x² - 15x - 27 = 0
(b)
(-α/3) + (-β/3)
= -(α + β)/3
= -5/3
(-α/3)(-β/3)
= αβ/9
= -3/9
所求方程式:
x² + (5/3)x - (3/9) = 0
9x² + 15x - 3 = 0
----------
5.
α 和 β 是二次方程 2x² - 7x + 4 = 0 的根
α + β = 7/2
αβ = 2
(a)
若兩根為α + 5 及 β + 2:
(α + 5) + (β + 5)
= (α + β) + 10
= (7/2) + 10
= 27/2
(α + 5)(β + 5)
=αβ + 5(α + β) + 25
= 2 + 5(7/2) + 25
= 89/2
所求方程式:
x² - (27/2)x + (89/2) = 0
2x² - 27x + 89 = 0
(b)
(2 - α) + (2 - β)
= 4 - (α + β)
= 4 - (7/2)
= 1/2
(2 - α)(2 - β)
= 4 - 2(α + β) + αβ
= 4 - 2(7/2) + 2
= - 1
所求的方程式:
x² - (1/2)x - 1 = 0
2x² - x - 2 = 0
2010-10-10 21:45:22 補充:
5.(a)
以上計法是以α + 5 及 β + 5 為兩根。
若兩根為α + 2 及 β + 2:
(α + 2) + (β + 2)
= (α + β) + 4
= (7/2) + 4
= 15/2
(α + 2)(β + 2)
=αβ + 2(α + β) + 4
= 2 + 2(7/2) + 4
= 13
所求方程式:
x² - (15/2)x + 13 = 0
2x² - 15x + 26 = 0
2010-10-11 19:36:13 補充:
樓下 002 回答者似乎有一鋪抄答案癮,抄完之後仲話係參考自己。
抄襲的還有:
http://hk.knowledge.yahoo.com/question/question?qid=7010101001729
http://hk.knowledge.yahoo.com/question/question?qid=7010101001681
http://hk.knowledge.yahoo.com/question/question?qid=7010092900856
http://hk.knowledge.yahoo.com/question/question?qid=7010100701699
2010-10-11 19:37:02 補充:
002 回答者似乎有一鋪抄答案癮,抄完之後仲話係參考自己。
抄襲的還有:
http://hk.knowledge.yahoo.com/question/question?qid=7010101001729
http://hk.knowledge.yahoo.com/question/question?qid=7010101001681
http://hk.knowledge.yahoo.com/question/question?qid=7010092900856
http://hk.knowledge.yahoo.com/question/question?qid=7010100701699
2010-10-11 19:37:16 補充:
002 回答者似乎有一鋪抄答案癮,抄完之後仲話係參考自己。
抄襲的還有:
http://hk.knowledge.yahoo.com/question/question?qid=7010101001729
http://hk.knowledge.yahoo.com/question/question?qid=7010101001681
http://hk.knowledge.yahoo.com/question/question?qid=7010092900856
http://hk.knowledge.yahoo.com/question/question?qid=7010100701699