MATH QUESTION CIRCLES

2010-10-11 2:40 am
19. In the figure, A is a point on the circumstance. OB intersects the circumstance at C and AC = OC= CB.

a) find angle CAB.
b) Prove that AB is the tangent to the circle at A.


圖片參考:http://imgcld.yimg.com/8/n/HA00610265/o/701010100127313873376710.jpg

回答 (2)

2010-10-11 2:56 am
✔ 最佳答案
(a) angle CAB = angle CBA = x
angle OCA=angle CAB + angle CBA =2x
Since triangle OAC is an equilateral triangle

angle COA = angle OAC = CBA = 2x
3(2x)=180=>x=30

(b) angle OAB=angle OAC + angle CAB = 90
So AB is the tangent to the circle at A.
2010-10-11 3:01 am
a)

OC = AC (Given)

OC = OA (radius)

So

OC = AC = OA

△OAC is a equilateral △.

So ㄥOCA = 60°

AC = BC (Given)

So ㄥCAB = ㄥCBA (base ∠s, isos. Δ)

We have
ㄥCAB + ㄥCBA = ㄥOCA (ext. ∠ of Δ)

2ㄥCAB = 60°

ㄥCAB = 30°

b)

ㄥOAB = ㄥOAC + ㄥCAB

ㄥOAB = 60° + 30° = 90°

AB is the tangent to the circle at A.(tangent⊥radius)


收錄日期: 2021-04-21 22:19:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101010000051KK01273

檢視 Wayback Machine 備份