trigonometric

2010-10-10 4:43 am
(a) Show that cosθ+cos3θ+cos5θ+cos7θ=4cosθcos2θcos4θ

(b) Solve the equation cosθ+cos3θ+cos5θ+cos7θ=0 for 0≦θ≦(∏/2)
更新1:

for 0≦θ≦(pi/2)

回答 (1)

2010-10-10 5:01 am
✔ 最佳答案
a) cos θ + cos 3θ + cos 5θ + cos 7θ

= (cos θ + cos 7θ) + (cos 3θ + cos 5θ)

= 2 cos 4θ cos 3θ + 2 cos 4θ cos θ

= 2 cos 4θ (cos θ + cos 3θ)

= 4 cos 4θ cos θ cos 2θ



b) cos θ + cos 3θ + cos 5θ + cos 7θ = 0

4 cos 4θ cos θ cos 2θ = 0

cos θ = 0 or cos 2θ = 0 or cos 4θ = 0

θ = π/2 or 2θ = π/2 or 2θ = 3π/2 or 4θ = π/2 or 4θ = 3π/2 or 4θ = 5π/2 or 4θ = 7π/2

θ = π/2 or π/4 or 3π/4 or π/8 or 3π/8 or 5π/8 or 7π/8

2010-10-09 21:17:05 補充:
cos θ = 0 gives θ = π/2 since 0 <= θ <= π/2

cos 2θ = 0 gives 2θ = π/2 or 3π/2 since 0 <= 2θ <= π

cos 4θ = 0 gives 4θ = π/2 or 3π/2 or 5π/2 or 9π/2 since 0 <= 4θ <= 2π
參考: Myself


收錄日期: 2021-04-19 23:24:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101009000051KK01522

檢視 Wayback Machine 備份