中二恆等式習題
證明下列各方程是否恆等式。 (x+5)(x-2)+x(x-3)=2(x-2)²+3x-5 (x+4/2)-(x+3/3)=1+(x/6)求下列各恆等式中常數A及B的值。
Ax-3≡Bx-A (A+1)x²+B≡0 4x+A+1≡(B-1)x+4
回答 (2)
LHS=left hand side
證明下列各方程是否恆等式。
1.(x+5)(x-2)+x(x-3)=2(x-2)²+3x-5
LHS=(x+5)(x-2)+x(x-3)
=x²-2x+5x-10+x²-3x
=2x²-10
RHS=2(x-2)²+3x-5
=2(x²-4x+4)+3x-5
=2x²-8x+8+3x-5
=2x²-5x+3
LHSnot=RHS
Therefore(x+5)(x-2)+x(x-3)=2(x-2)²+3x-5 is not an identity.
2.(x+4/2)-(x+3/3)=1+(x/6)
LHS=(x+4/2)-(x+3/3)or((x+4)/2)-((x+3)/3)
=x-x+4/2-1 or (3x+12)/6-(2x+6)/6
=1 or (x+6)/6
RHS=1+(x/6)
=6/6+(x/6)
=(6+x)/6
LHS=RHS or not
Therefore(x+4/2)-(x+3/3)=1+(x/6) is not an identity or (x+4/2)-(x+3/3)=1+(x/6) is an identity.
求下列各恆等式中常數A及B的值。
1.Ax-3≡Bx-A
LHS=Ax-3
RHS=Bx-A
ThereforeAx-3≡Bx-A
-3=-A Bx=Ax
A=3 B=A
B=3
第二題唔識做~~
3.4x+A+1≡(B-1)x+4
LHS=4x+A+1
RHS=(B-1)x+4
=Bx-x+4
Therefore4x+A+1≡Bx-x+4
4x=Bx-x A+1=4
4=B-1 A=3
B=5
參考: Me
收錄日期: 2021-04-23 20:42:12
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101006000051KK01736
檢視 Wayback Machine 備份