✔ 最佳答案
a)x(x+1)(x+2)(x+3)+1≡(x^2+Ax+B)^2因 x(x+1)(x+2)(x+3)+1 展開後各項係數為正 , 故 A , B 非負。當 x = 0 , 0 + 1 = (0 + 0 + B)^21 = B當 x = - 1 :0 + 1 = (1 - A + B)^21 = (1 - A + 1)^21 = (2 - A)^2A = 1 或 3 ....(1)當 x = - 2 :0 + 1 = (4 - 2A + 1)^21 = (5 - 2A)^2A = 2 或 3 ....(2)(1) & (2) :A = 3
b)令a)中 x 為 15 , 15 * 16 * 17 * 18 + 1 = (15^2 + 3(15) + 1)^2= 271^2 n = 271
2010-10-03 14:01:46 補充:
可以,不過好煩,要兩邊展開,比較係數,再解方程。
2010-10-03 23:03:41 補充:
x(x+1)(x+2)(x+3)+1
= x(x+3) (x+1)(x+2) + 1
= (x^2 + 3x) (x^2 + 3x + 2) + 1
= (x^2+3x+1 - 1) (x^2+3x+1 + 1) + 1
= (x^2 + 3x + 1)^2 - 1 + 1
= (x^2 + 3x + 1)^2
A = 3
B = 1
2010-10-03 23:04:20 補充:
x(x+1)(x+2)(x+3)+1
= x(x+3) (x+1)(x+2) + 1
= (x^2 + 3x) (x^2 + 3x + 2) + 1
= (x^2+3x+1 - 1) (x^2+3x+1 + 1) + 1
= (x^2 + 3x + 1)^2 - 1 + 1
= (x^2 + 3x + 1)^2
A = 3
B = 1
2010-10-03 23:07:39 補充:
這就證明了 :
四個連續數相乘再加1是平方數。