α β 二次方程根

1.若二次方程x^2 +ax+b=0與另一二次方程x^2 +px+q=0有一公共根
證明(a-p)(bq-aq)=(b-q)^2

2.已知a≠b,而α是二次方程x^2+ax+b=0與另一二次方程x^2+bx+a=0的公共根。試求α的值並證明a+b= -1

回答 (1)

2010-09-30 5:26 am
✔ 最佳答案
1)設 @ 為公共根 :@^2 + a@ + b = 0 .....(1)
&
@^2 + p@ + q = 0 .....(2)(1) - (2) :(a - p)@ + b - q = 0@ = (q - b) / (a - p) .....(3)
(1) * p - (2) * a :(p - a)@^2 + bp - qa = 0@^2 = (qa - bp) / (p - a) .....(4)
(3)^2 = (4) :[(q - b)^2] / (a - p)^2] = (qa - bp) / (p - a)故(a - p)(bp - aq) = (b - q)^2
2)α^2 + aα + b = 0 ......(1)α^2 + bα + a = 0 ......(2)(1) - (2) :α(a - b) + (b - a) = 0(a - b)(α - 1) = 0因a≠b , 故 α - 1 = 0α = 1代入 (1) :1^2 + a(1) + b = 0a + b = - 1


收錄日期: 2021-04-21 22:15:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100929000051KK01412

檢視 Wayback Machine 備份