maths problem 02

2010-09-30 2:24 am
3. 若logx + log y = 2, 則1/x + 1/y的最小值是__, 此時x = __; y = __.
4. y = 1/(x-3) + x (x>3)的最__值是__; 此時x = __.

回答 (1)

2010-09-30 3:14 am
✔ 最佳答案
3)logx + log y = 2log (xy) = 2xy = 1001/x + 1/y >= 2√ [1/(xy)] = 2√(1/100) = 1/5 , 當 1/x = 1/y 時等號成立。最小值是_1/5_, 此時x = 10__; y = 10__.4)y = 1/(x-3) + xy - 3 = (x-3) + 1/(x-3) >= 2√[(x-3)(1/(x-3))] = 2 當 x-3 = 1/(x-3)
即 x = 4 時等號成立。
最_小_值是_2_; 此時x = _4_.

2010-09-29 19:16:29 補充:
Corr :

最_小_值是_2+3 = 5_; 此時x = _4_.

2010-09-29 19:57:45 補充:
x-3 = 1/(x-3)

x = 2 or 4 ,

因 x > 3 , 捨去x = 2


收錄日期: 2021-04-21 22:16:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100929000051KK00964

檢視 Wayback Machine 備份