maths problem 01

2010-09-30 2:23 am
1. 已知x² + y² – 4 = 0, 其中x,y ∈ R, u = (xy)/2之最__值是__, 此時x = ___; y = __.
2. 若x > 0, 若 y > 0, 且 x + 4y = 40, 則log x + log y的最__值是__; 此時x = __; y = __.

回答 (1)

2010-09-30 3:44 am
✔ 最佳答案
1)x² + y² – 4 = 04 = x² + y² >= 2√(x² y²) = 2xy 1 >= xy/2當 x² = y² 時即 x² = y² = 2 時等號成立。u = (xy)/2之最_大_值是_1_, 此時x = _√2__; y = _√2_.
2)log x + log y= log (xy),40 = x + 4y >= 2√[(x)(4y)] = 4√(xy) 100 >= xy當 x = 4y 時即 x = 20 , y = 5 時等號成立。log x + log y的最_大_值是_100_; 此時x = 20__; y = _5_.


2010-09-29 19:48:10 補充:
Corr:

log x + log y的最_大_值是_log100 = 2_; 此時x = 20__; y = _5_.


收錄日期: 2021-04-21 22:16:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100929000051KK00961

檢視 Wayback Machine 備份