F5 Maths

2010-09-27 1:52 am
figure: http://img827.imageshack.us/img827/8830/30837124.jpg
In the figure: ABCD is a circle. If arc AC: arc BC: arc CD : arc DA = 1:2:3:3
and E is a point lying on BD, then angle CAE =

A. 45
B. 50
C. 55
D. 60

回答 (2)

2010-09-27 2:42 am
✔ 最佳答案
In the figure: ABCD is a circle. If arc AB : arc BC: arc CD : arc DA = 1 : 2: 3 : 3 and E is a point lying on BD, then angle CAE =

The answer is: B. 50°


∠BAC
= 180° x [(arc BC)/(arc AB + arc BC + arc CD + arc CA)]
= 180° x [2/(1 + 2 + 3 + 3)]
= 40°

∠ABE
= = 180° x [(arc DA)/(arc AB + arc BC + arc CD + arc CA)]
= 180° x [3/(1 + 2 + 3 + 3)]
= 60°

In ΔABE, sum of interior angles:
∠ABE + ∠BAE + ∠AEB = 180°
∠ABE + (∠BAC + ∠CAE) + ∠AEB = 180°
60° + (40° + ∠CAE) + 30° = 180°
∠CAE = 50°
參考: adam
2010-09-27 2:26 am
arc AC: arc BC: arc CD : arc DA = 1:2:3:3

or

arc AB: arc BC: arc CD : arc DA = 1:2:3:3 ?

or

any other typing error ?


收錄日期: 2021-04-16 11:39:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100926000051KK01366

檢視 Wayback Machine 備份