mathematical induction唔識計呀

2010-09-26 8:57 am
f4數唔識計呀

即係果d

1+2+3+...+(2n-1)=n^2

但係一去到果種唔係1開頭果d就唔識計

例如2+5+8+...+(3n-1)=n(3n+1)/2

唔該幫我計左佢同埋解釋一下

thz

回答 (1)

2010-09-26 10:56 am
✔ 最佳答案
P(n): 2 + 5 + 8 + ... + (3n - 1) = n(3n + 1)/2
where n is natural number (1, 2, 3 …..)

When n = 1:
L.S. = 3(1) - 1 = 2
R.S. = 1[3(1) + 1]/2 = 2
Hence, P(1) is true.

Assume that n = k is true,
i.e. 2 + 5 + 8 + ... + (3k - 1) = k(3k + 1)/2
When n = k + 1:
Prove that: 2 + 5 + 8 + ... + [3(k + 1) - 1] = (k + 1)[3(k + 1) + 1]/2
L.S.
= 2 + 5 + 8 + ... + (3k - 1) + [3(k + 1) - 1]
= [2 + 5 + 8 + ... + (3k - 1)] + (3k + 2)
= [k(3k + 1)/2] + (3k + 2)
= [(3k² + k)/2] + [(6k + 4)/2]
= (3k² + 7k + 4)/2
= (k + 1)(3k + 4)/2
= (k + 1)(3k + 3 + 1)/2
= (k + 1) [3(k + 1) + 1]/2
= R.S.

By the principle of mathematical induction, P(n) is true where n is natural number.
參考: adam


收錄日期: 2021-04-16 11:39:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100926000051KK00077

檢視 Wayback Machine 備份