1. 函數f(x) = (x^2 + 2) / √(x^2

2010-09-24 3:53 am
1. 函數f(x) = (x^2 + 2) / √(x^2 + 1)之最__值是___, 此時x =_____.

回答 (2)

2010-09-24 4:13 am
✔ 最佳答案
(x^2 + 2) / √(x^2 + 1)= [(x^2 + 1) + 1] / √(x^2 + 1)= (x^2 + 1) /√(x^2 + 1) + 1/√(x^2 + 1)= √(x^2 + 1) + 1/√(x^2 + 1)= (1/4)√(x^2 + 1) + 1/√(x^2 + 1) + (3/4)√(x^2 + 1) ≥ 2 √ [(1/4)√(x^2 + 1) * 1/√(x^2 + 1)] + (3/4)√(x^2 + 1)= 1 + (3/4)√(x^2 + 1)當且僅當 (1/4)√(x^2 + 1) = 1 / √(x^2 + 1) (x^2 + 1) = 4x = √3 時 , 函數f(x) = (x^2 + 2) / √(x^2 + 1)之最_小_值是 1 + (3/4)√(3 + 1) = 5/2 , 此時x =__√3___.

2010-09-23 23:41:47 補充:
修正 :

(x^2 + 2) / √(x^2 + 1)

= [(x^2 + 1) + 1] / √(x^2 + 1)

= (x^2 + 1) /√(x^2 + 1) + 1/√(x^2 + 1)

= √(x^2 + 1) + 1/√(x^2 + 1)

≥ 2 √ [√(x^2 + 1) / √(x^2 + 1)]

= 2

當且僅當 √(x^2 + 1) = 1/√(x^2 + 1)


x^2 + 1 = 1

x = 0 時 ,

函數f(x) = (x^2 + 2) / √(x^2 + 1)之最_小_值是 2 ,
此時x =__0___.
2011-05-01 7:24 am
good boys on this!


收錄日期: 2021-04-21 22:16:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100923000051KK01114

檢視 Wayback Machine 備份