中三數學LAWS OF INTEGRAL INDECES

2010-09-19 10:00 pm
1. 6/(4^X) - 384 = 0
X=?

2. (( 2X^(N+3) - X^(2N) )) / (( X^(2N+3) - 2X^(N+6) ))

唔該哂!!

回答 (2)

2010-09-25 4:15 am
✔ 最佳答案
1. 6/(4^X) - 384 = 0X=?A. 6/(4^x) – 384 = 0------Capital letter usually stands for point6*4^-x = 3844^-x = 644^-x = 4^3So, -x = 3x = -32. (( 2X^(N+3) - X^(2N) )) / (( X^(2N+3) - 2X^(N+6) ))A. (( 2x^(n+3) - x^(2n) )) / (( x^(2n+3) - 2x^(n+6) ))= (x^n(2x^3-x^n))/(x^(n+3)(x^n-2x^3))= -(x^n(2x^3-x^n))/(x^(n+3)(2x^3-x^n))= -x^(n-n-3)= -x^(-3)

2010-09-24 20:16:05 補充:
1. 6/(4^X) - 384 = 0
X=?

A. 6/(4^x) – 384 = 0------Capital letter usually stands for point
6*4^-x = 384
4^-x = 64
4^-x = 4^3
So, -x = 3
x = -3

2010-09-24 20:18:00 補充:
2. (( 2X^(N+3) - X^(2N) )) / (( X^(2N+3) - 2X^(N+6) ))

A. (( 2x^(n+3) - x^(2n) )) / (( x^(2n+3) - 2x^(n+6) ))
= (x^n(2x^3-x^n))/(x^(n+3)(x^n-2x^3))
= -(x^n(2x^3-x^n))/(x^(n+3)(2x^3-x^n))
= -x^(n-n-3)
= -x^(-3)
PS: I admit that it is a bit messy for reading.If you can't read it, please tell me.

2010-09-26 16:33:35 補充:
To 005:
I'm a F.3 student.
參考: Myself
2010-09-19 10:06 pm
6/(4^X) - 384 = 0
6/4^x=384
1/4^x=64
4^-x=4^3
x.....=-3
____________________

2010-09-19 14:16:52 補充:
Take the common factors..............

2010-09-21 18:26:14 補充:
我都計唔到
..............

2010-09-25 11:10:35 補充:
太強了...............
中3都唔識Q2,慚愧慚愧!!


收錄日期: 2021-04-13 17:31:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100919000051KK00890

檢視 Wayback Machine 備份