代數問題(8),數學達人請進。

2010-09-16 11:34 pm
代數問題(8),數學達人請進。

(a) (2y - 9)^2 = 5

請演算計法,及 proof (把答案代入 equation 內求證)。

(b) (3y + 10)^2 + 81 = 0

請演算計法,及 proof (把答案代入 equation 內求證)。

回答 (1)

2010-09-17 12:07 am
✔ 最佳答案
(a) (2y-9)^2 = 5
2y-9 = ±√5
2y = √5 + 9 or √5 - 9
y = (√5 + 9)/2 or (√5 - 9)/2

(b) (3y+10)^2 + 81 = 0
(3y+10)^2 = -81
3y+10 = ±√-81
There is no real solution in this eqaution.

However, if you can express in terms of a+bi
3y+10 = ±9i
3y+10 = 9i or -9i
3y = 9i-10 or -9i-10
y = (9i-10)/3 or (-9i-10)/3

2010-09-16 16:26:03 補充:
Sorry for a mistake in (a)
2y = √5 + 9 or -√5 + 9
y = (√5 + 9)/2 or (9 - √5)/2

For checking,
(a) Put y = (√5 + 9)/2
= [2(√5 + 9)/2 -9]^2
= (√5)^2
= 5
Put y = (9 - √5)/2
= [2(9 - √5)/2 -9]^2
= (-√5)^2
= 5

2010-09-16 16:33:50 補充:
(b) Put y = (9i-10)/3
(3y+10)^2
= (9i-10+10)^2
= (9i)^2
= 81i^2
= 81√-1
= √-81
Put y = (-9i-10)/3
= (3y+10)^2
= (-9i)^2
= 81i^2
= √-81
參考: Knowledge is power.


收錄日期: 2021-04-13 17:31:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100916000051KK00540

檢視 Wayback Machine 備份