✔ 最佳答案
Let the required unit vector be n = cos@i + sin@j.
By dot product,
v‧n = │v││n│cos60*
As n is a unit vector, n = 1
3cos@ + 4sin@ = sqrt[(3^2) + (4^2)] (1) (1/2)
5sin(@ + sin^(-1)(3/5)) = 5/2
sin(@ + sin^(-1)(3/5)) = 1/2
@ + sin^(-1)(3/5) = 30* or 150*
@ = 30* - sin^(-1)(3/5) or 150* - sin^(-1)(3/5)
cos@ = cos30*cos[sin^(-1)(3/5)] + sin30*sin[sin^(-1)(3/5)]
= (sqrt3)/2 (4/5) + (1/2)(3/5)
= (4sqrt3 + 3)/10
or cos@ = cos150*cos[sin^(-1)(3/5)] + sin150*sin[sin^(-1)(3/5)]
= (-sqrt3)/2 (4/5) + (1/2)(3/5)
= (-4sqrt3 + 3)/10
sin@ = sin30*cos[sin^(-1)(3/5)] - cos30*sin[sin^(-1)(3/5)]
= (1/2)(4/5) - (sqrt3)/2 (3/5)
= (4 - 3sqrt3)/10
or sin@ = sin150*cos[sin^(-1)(3/5)] - cos150*sin[sin^(-1)(3/5)]
= (1/2)(4/5) + (sqrt3)/2 (3/5)
= (4 + 3sqrt3)/10
So, the unit vectors are:
(4sqrt3 + 3)/10 i + (4 - 3sqrt3)/10 j
or
(-4sqrt3 + 3)/10 i + (4 + 3sqrt3)/10 j
參考: Prof. Physics