Dot Product

2010-09-16 6:28 am
Find two unit vector that make an angle of 60degree witn v = <3,4>.
Do not use Calculater.

回答 (1)

2010-09-16 4:25 pm
✔ 最佳答案
Let the required unit vector be n = cos@i + sin@j.

By dot product,

v‧n = │v││n│cos60*

As n is a unit vector, n = 1

3cos@ + 4sin@ = sqrt[(3^2) + (4^2)] (1) (1/2)

5sin(@ + sin^(-1)(3/5)) = 5/2

sin(@ + sin^(-1)(3/5)) = 1/2

@ + sin^(-1)(3/5) = 30* or 150*

@ = 30* - sin^(-1)(3/5) or 150* - sin^(-1)(3/5)

cos@ = cos30*cos[sin^(-1)(3/5)] + sin30*sin[sin^(-1)(3/5)]

= (sqrt3)/2 (4/5) + (1/2)(3/5)

= (4sqrt3 + 3)/10

or cos@ = cos150*cos[sin^(-1)(3/5)] + sin150*sin[sin^(-1)(3/5)]

= (-sqrt3)/2 (4/5) + (1/2)(3/5)

= (-4sqrt3 + 3)/10

sin@ = sin30*cos[sin^(-1)(3/5)] - cos30*sin[sin^(-1)(3/5)]

= (1/2)(4/5) - (sqrt3)/2 (3/5)

= (4 - 3sqrt3)/10

or sin@ = sin150*cos[sin^(-1)(3/5)] - cos150*sin[sin^(-1)(3/5)]

= (1/2)(4/5) + (sqrt3)/2 (3/5)

= (4 + 3sqrt3)/10

So, the unit vectors are:

(4sqrt3 + 3)/10 i + (4 - 3sqrt3)/10 j

or

(-4sqrt3 + 3)/10 i + (4 + 3sqrt3)/10 j


參考: Prof. Physics


收錄日期: 2021-04-19 23:17:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100915000051KK01511

檢視 Wayback Machine 備份