Quick!!! secondary maths!!!

2010-09-15 6:58 am
Prove these identities:
a) arctan x = (丌/2) - arccot x
b) arcsin x + arccos x = (丌/2)


*Pls answer step by step slowly. thank you

回答 (1)

2010-09-15 8:27 am
✔ 最佳答案
Question (a):

cot (丌/2 - y) = tan y = x
Hence (丌/2 - y) = arc cot x

arc tan x + arc cot x = y + (丌/2 - y)
arc tan x + arc cot x = y + 丌/2 - y
arc tan x + arc cot x = 丌/2


Question (b)
For-丌/2 <= y <- +丌/2

Cos (丌/2 - y) = sin y = x
Hence (丌/2 - y) = arc cos x
arc sin x + arc cos x = y + (丌/2 - y)
arc sin x + arc cos x = y + 丌/2 - y
arc sin x + arc cos x = 丌/2

2010-09-15 00:30:07 補充:
Question (a) continue:

arc tan x + arc cot x = 丌/2
arc tan x = 丌/2 - arc cot x


收錄日期: 2021-04-23 20:46:36
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100914000051KK01560

檢視 Wayback Machine 備份