數學歸納法跪求詳解

2010-09-13 5:27 am
(a) 用數學歸納法,證明對任意正整數n1/(1×2×3)+1/(2×3×4)+...+1/n(n+1)(n+2)=n(n+3) /4(n+1)(n+2)(b) 求最小的n 使得
1/(1×2×3)+1/(2×3×4)+...+1/n(n+1)(n+2)>=6/25

回答 (1)

2010-09-13 6:04 am
✔ 最佳答案
(a)
Let P(n) be 1/(1x2x3)+1/(2x3x4)+...+1/n(n+1)(n+2)=n(n+3)/4(n+1)(n+2)
P(1): 1/6=4/24
Assume P(k) is true,then P(k+1):
1/(1x2x3)+...+1/n(n+1)(n+2)+1/(n+1)(n+2)(n+3)=......+1/(n+1)(n+2)(n+3)
RHS:
n(n+3)/4(n+1)(n+2)+1/(n+1)(n+2)(n+3)
=n(n+3)(n+3)/4(n+1)(n+2)(n+3)+4/4(n+1)(n+2)(n+3)
=(n(n+3)(n+3)+4)/4(n+1)(n+2)(n+3)
=(n^3+6n^2+9n+4)/4(n+1)(n+2)(n+3)
=(n+1)(n+1)(n+4)/4(n+1)(n+2)(n+3)
=(n+1)(n+4)/4(n+2)(n+3)
PROOF IS COMPLETED

2010-09-12 22:35:34 補充:
(b)
1/(1×2×3)+1/(2×3×4)+...+1/n(n+1)(n+2)>=6/25
n(n+3)/4(n+1)(n+2)>=6/25
25n(n+3)>=24(n+1)(n+2)
25n^2+75n>=24n^2+72n+48
n^2+3n-48>=0
n>=5.589 or n<=-8.589(rej.)

n=6
參考: , 我


收錄日期: 2021-04-23 22:03:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100912000051KK01732

檢視 Wayback Machine 備份