Maths..

2010-09-12 1:24 pm
Prove the following identity

sin^4θ - cos^4θ 恆等於 2sin^2θ -1

回答 (4)

2010-09-12 4:45 pm
✔ 最佳答案
(sinθ)^4-(cosθ)^4
=[(sinθ)^2+(cosθ)^2][(sinθ)^2-(cosθ)^2]
=(1)[(sinθ)^2-(cosθ)^2] (since [(sinθ)^2+(cosθ)^2]=1)
=(sinθ)^2-[1-(sinθ)^2]
=2(sinθ)^2-1
2010-09-12 8:56 pm
sin^4θ - cos^4θ 恆等於 2sin^2θ -1
_________________________
LHS
sin^4θ - cos^4θ
(sin^2X-cos^2X)(sin^2X+cos^2X)
(sin^2X-cos^2X)
_____________
RHS
2sin^2θ -1
2sin^2X-cos^2X-sin^2X
sin^2X-cos^2X
LHS
_________________
sin^2X+cos^2X=1
2010-09-12 7:24 pm
You should remember:
sin^2 θ + cos^2 θ = 1
Hence, (sin^2θ+cos^2θ)(sin^2θ-cos^2θ)
= 1(sin^2θ-cos^2θ)
= (sin^2θ-cos^2θ)
2010-09-12 3:13 pm
sin^4θ-cos^4θ
=(sin^2θ+cos^2θ)(sin^2θ-cos^2θ)
=sin^2θ-cos^2θ
=sin^2θ-(1-sin^2θ)
=sin^2θ-1+sin^2θ
=2sin^2θ-1
參考: 我


收錄日期: 2021-04-13 17:31:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100912000051KK00251

檢視 Wayback Machine 備份