Simultaneous equations....急!!!
請幫幫我.....謝謝!
1) y = 2x^2 + x + 2
y = 2x + 1
2) x^2 + y^2 = 4
x + y = 6
3) x^2 - 2y^2 = 3x + 4y = 1
4) x^2 + y^2 = c^2
x + y = c
5) A 2-digit number is increased by 45 when the digits are reversed. The product of the digits is 36. Find the number.
Thanks! :)
回答 (2)
1) y=2x^2+x+2
y=2x+1
Sol
2x+1=2x^2+x+2
2x^2-x+1=0
(2x+1)(x-1)=0
x=-1/2 or x=1
(a) x=-1/2
y=2x+1=-1+1=0
(b) x=1
y=2x+1=2+1=3
2) x^2 + y^2 = 4
x + y = 6
Sol
y=6-x
x^2+y^2=4
x^2+(6-x)^2=4
2x^2-12x+36=4
x^2-6x+16=0
x=(6+/-√(36-64))/2=3+/-i√7
(a) x=3+i√7,y=3-i√7
(b)x=3-i√7,y=3+i√7
3) x^2-2y^2=3x+4y=1
Sol
3x=1-4y
x^2-2y^2=1
9x^2-18y^2=9
(1-4y)^2-18y^2-9=0
16y^2-8y+1-18y^2-9=0
-2y^2-8y-8=0
y^2+4y+4=0
(y+2)^2=0
y=-2(double roots)
3x=1+8=9
x=3
4) x^2 + y^2 = c^2
x + y = c
Sol
y=c-x
x^2+(c-x)^2=c^2
x^2+x^2-2cx+c^2=c^2
2x^2-2cx=0
x(x-c)=0
x=0 or x=c
(a) x=0 =>y=c
(b) x=c=>y=0
5) A 2-digit number is increased by 45 when the digits are reversed. Theproduct
of the digits is 36. Find the number.
Sol
設此數為xy=10x+y
(10y+x)-(10x+y)=45
9(y-x)=45
y-x=5
y=x+5
xy=36
x(x+5)=36
x^2+5x-36=0
(x-4)(x+9)=0
x=4 or x=-9(不合)
此數=49
收錄日期: 2021-04-19 23:13:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100909000051KK01420
檢視 Wayback Machine 備份