Complex number & imaginary number problems ?

2010-09-08 4:07 pm
Z=(a+bi)
Z*=(a-bi)

1) Solve equations : i(3z*+iz)=z+1


Re(a-bi)=a

2) z=a+bi, w=b+ai

Prove that Re(z/z+w)=1/2

PS: Hope there's someone help me slove these two problem, I will be very appreciated. Thank You!

回答 (1)

2010-09-08 4:33 pm
✔ 最佳答案
1) i [3(a - bi) + i(a + bi)] = (a + bi) + 1
==> i [(3a - 3bi) + (ai - b)] = (a + 1) + bi
==> (3ai + 3b) + (-a - bi) = (a + 1) + bi
==> (3b - a) + (3a - b) i = (a + 1) + bi

Equating real and imaginary parts:
3b - a = a + 1
3a - b = b.

Rewrite these as
3b - 2a = 1
a = 2b/3.

Substitute the second into the first:
3b - 2(2b/3) = 1
==> 5b/3 = 1
==> b = 3/5.
Thus, a = (2/3)(3/5) = 2/5.

Therefore, z = a + bi = 2/5 + 3i/5.
--------------------------
2) z/(z + w)
= (a + bi) / [(a + b) + (b + a)i]
= (a + bi) / [(a + b)(1 + i)], by factoring
= [(a + bi)(1 - i)] / [(a + b)(1 + i)(1 - i)], multiplying by the conjugate (1 - i)
= [(a + b) + i(a - b)] / [(a + b) * 2].

Ignoring the imaginary part yields
Re(z/(z + w)) = (a + b) / [(a + b) * 2] = 1/2.

I hope this helps!


收錄日期: 2021-05-01 01:19:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100908080735AAqN0og

檢視 Wayback Machine 備份