有關a^2+b^2=c^2

2010-09-08 6:13 am
WHY a^2+b^2=c^2 中 a,b不可同時是奇數??

回答 (2)

2010-09-08 6:26 am
✔ 最佳答案
反證法 :設a , b 同時是奇數 :a = 2p + 1
b = 2k + 1則
a^2 + b^2 = c^2(2p+1)^2 + (2k+1)^2 = c^2(4p^2 + 4p + 1) + (4k^2 + 4k + 1) = c^24(p^2 + p + k^2 + k) + 2 = c^2故 c^2 是 偶數推得 c 也必為偶數,設 c = 2t ,則 c^2 = (2t)^2 = 4t^2 是 4 的倍數 ,這與 c^2 = 4(p^2 + p + k^2 + k) + 2 不是 4 的倍數茅盾。故a^2+b^2=c^2 中 a,b不可同時是奇數。
2010-09-08 5:56 pm
權威解答:
Since if a and b are both odd, then the left side must be mutiple of 2, implying
that c must be even too, the equation can be further simplified by divided by 2
to obtain the same form, P^2+Q^2=R^2, if we do this continuously ( to assume
P and Q are both odd), it will be meaningless, and doing the same things, so
we initially assume that a and b are not both odd.
參考: Simon Yau


收錄日期: 2021-04-13 17:30:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100907000051KK01588

檢視 Wayback Machine 備份