F.6 pure maths

2010-09-03 7:17 am
1(a)when the polynomial f(x) is divided by (x-1)(x-2)(x-3) the remainder is given by r(x)=a(x-2)(x-3)+b(x-3)(x-1)+c(x-1)(x-2). Express the constants a,b,c in terms of f(1), f(2) and f(3)
1(b)Without performing the division, find the value of the constant k for which the remainder when (x^5+kx^2) is divided by (x-1)(x-2)(x-3) constanst no term in x^2

2 Let f(x)=2x^4+x^3-6x^2-2x+3 and g(x)=2x^4-3x^3+2x-3. Find the greatest common divisor of f(x) and g(x)
更新1:

1(b)Without performing the division, find the value of the constant k for which the remainder when (x^5+kx^2) is divided by (x-1)(x-2)(x-3) contains no term in x^2

回答 (2)

2010-09-03 7:13 pm
✔ 最佳答案
回答在補充................

2010-09-03 11:15:02 補充:
1
Sol
f(x)=q(x)(x-1)(x-2)(x-3)+a(x-2)(x-3)+b(x-3)(x-1)+c(x-1)(x-2)
f(1)=a(-1)(-2)=2a
a=f(1)/2
f(2)=b(1)(1)=b
b=f(2)
f(3)=c(2)(1)=2c
c=f(3)/2

2010-09-03 11:15:44 補充:
1(b)
Sol
x^5+kx^2=p(x)(x-1)(x-2)(x-3)+mx+n
1+k=m+n
32+4k=2m+n
243+9k=3m+n
=>
(32+4k)-(1+k)=(2m+n)-(m+n)
31+3k=m
(243+9k)-(32+4k)=(3m+n)-(2m+n)
211+5k=m
211+5k=31+3k
2k=-180
k=-90

2010-09-03 11:16:07 補充:
2
Sol
f(x)+g(x)=(2x^4+x^3-6x^2-2x+3)+(2x^4-3x^3+2x-3)
=4x^4-2x^3-6x^2=2x^2(2x^2-x-3)
=2x^2(2x-3)(x+1)
f(x)-g(x)
=(2x^4+x^3-6x^2-2x+3)-(2x^4-3x^3+2x-3)
=4x^3-6x^2-4x+6
=2(2x^3-3x^2-2x+3)
=(x-1)(x+1)(2x-3)
So
the greatest common divisor of f(x) and g(x)=(x+1)(2x-3)
2010-09-03 7:30 am
What's meant by "which the remainder when (x^5+kx^2) is divided by (x-1)(x-2)(x-3) constanst no term in x^2"??


收錄日期: 2021-04-22 00:50:56
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100902000051KK01703

檢視 Wayback Machine 備份