F.4 數學 Number system 一條

2010-08-26 12:01 am
If z is a complex number and (1+i)z^2-(2+3i)+2+i=0. Find z.
請問如何計算?
更新1:

題目沒有打錯,謝謝!

更新2:

已改為上傳圖片: http://img822.imageshack.us/img822/5615/123ou.png 謝謝!

更新3:

答案應該不一定是數字,因為上個幾題有danswer都係complex number

回答 (4)

2010-09-03 8:14 am
✔ 最佳答案
If z is a complex number and (1+i)z^2-(2+3i)+2+i=0. Find z.請問如何計算?Sol(1+i)z^2-(2+3i)+2+i=0(1+i)z^2=2+3i-2-i(1+i)z^2=2iz^2=2i/(1+i)=2(1-i)i/2=i(1-i)=1+i=√2(1/√2+i/√2) =2^(1/2)(Cos(π/4)+iSin(π/4)) =2^(1/2)(Cos(2nπ+π/4)+iSin(2nπ+π/4)) z=2^(1/4)(Cos(nπ+π/8)+iSin(nπ+π/8)) (1) n=0z=2^(1/4) (Cos(π/8)+iSin(π/8)) =2^(1/4) (√(2+√2)/2+i√(2-√2)/2) =2^(-3/4) (√(2+√2)+i√(2-√2)) (2) n=1z=2^(1/4) (Cos(9π/8)+iSin(9π/8)) =2^(1/4) (-√(2+√2)/2-i√(2-√2)/2) =2^(-3/4) (-√(2+√2)-i√(2-√2)) 題目改為(1+i)z^2-(2+3i)z+2+i=0. (1+i)z^2-(2+3i)z+2+i=0D=(2+3i)^2-4*(1+i)(2+i) =(4+12i-9)-4(2+i+2i-1) =(4+12i-9)-4(1+3i) =-9(1+i)z^2-(2+3i)z+2+i=0z=((2+3i)+/-3i)/(2+2i) (1) z=(2+3i+3i)/(2+2i) =(1+3i)/(1+i) =(1+3i)(1-i)/[(1+i)(1-i)] =(1-i+3i+3)/2=2+i(2) z=((2+3i)-3i)/(2+2i) =2/(2+2i) =1/(1+i) =(1-i)/2

2010-09-03 00:15:19 補充:
If z is a complex number and (1+i)z^2-(2+3i)+2+i=0. Find z.
請問如何計算?
Sol
(1+i)z^2-(2+3i)+2+i=0
(1+i)z^2=2+3i-2-i
(1+i)z^2=2i
z^2=2i/(1+i)=2(1-i)i/2=i(1-i)=1+i
=√2(1/√2+i/√2)
=2^(1/2)(Cos(π/4)+iSin(π/4))
=2^(1/2)(Cos(2nπ+π/4)+iSin(2nπ+π/4))
z=2^(1/4)(Cos(nπ+π/8)+iSin(nπ+π/8))

2010-09-03 00:16:16 補充:
(1) n=0
z=2^(1/4) (Cos(π/8)+iSin(π/8))
=2^(1/4) (√(2+√2)/2+i√(2-√2)/2)
=2^(-3/4) (√(2+√2)+i√(2-√2))
(2) n=1
z=2^(1/4) (Cos(9π/8)+iSin(9π/8))
=2^(1/4) (-√(2+√2)/2-i√(2-√2)/2)
=2^(-3/4) (-√(2+√2)-i√(2-√2))

2010-09-03 00:16:53 補充:
題目改為(1+i)z^2-(2+3i)z+2+i=0.
(1+i)z^2-(2+3i)z+2+i=0
D=(2+3i)^2-4*(1+i)(2+i)
=(4+12i-9)-4(2+i+2i-1)
=(4+12i-9)-4(1+3i)
=-9

2010-09-03 00:17:01 補充:
(1+i)z^2-(2+3i)z+2+i=0
z=((2+3i)+/-3i)/(2+2i)
(1) z=(2+3i+3i)/(2+2i)
=(1+3i)/(1+i)
=(1+3i)(1-i)/[(1+i)(1-i)]
=(1-i+3i+3)/2
=2+i
(2) z=((2+3i)-3i)/(2+2i)
=2/(2+2i)
=1/(1+i)
=(1-i)/2
2010-09-04 3:15 pm
(1+i)z^2-(2+3i)+2+i=0
(1+i)z^2 -2 -3i +2 +i=0
(1+i)z^2 -3i +i = 0
(1+i)z^2 -2i = 0
(1+i)z^2 = +2i
z^2 = +2i/(1 + i)

         2i(1 – i)
z^2 = ---------------
        (1+i)(1 – i)

         2i(1 – i)
z^2 = ------------  (Note: i^2 = -1)
       (1– i^2)

         2i(1 – i)
z^2 = ------------
          1–(-1)

         2i(1 – i)
z^2 = ------------
             2

z^2 = i – i^2

z^2 = i – (-1)

z^2 = 1 + i
 
Taking square root on both sides

z = square root of (1 + i)  or (1 + i)^0.5
2010-08-26 12:11 am
好明顯有問題

你話無打錯, 都get 唔到問乜
-(2+3i)+2+i
點解會咁寫?

麻煩你寫清楚d

2010-08-25 22:53:45 補充:
Z cannot be found.

Z can only be determined in terms of i
2010-08-26 12:02 am
Have you missed z next to (2+3i)?

2010-08-25 17:56:01 補充:
If question isn't wrong, then you can solve for z simply by rearranging the real terms and imaginary terms, and take the square root of both side to get z,


收錄日期: 2021-04-29 16:57:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100825000051KK02610

檢視 Wayback Machine 備份