F.3Maths Laws of indices

2010-08-15 7:57 pm
Show steps please~

知答案,但唔知steps 點寫?
1) 3^n+1-3^n-1 / 2×3^n
=4/3

2a) If n is positive integer, prove that 2^n × 3^n+1 = 3.6^n,
b) Find the value of 2^n × 3^n+1 / 6^n-2
=108

回答 (2)

2010-08-15 8:41 pm
✔ 最佳答案
1)3^n+1-3^n-1 / 2×3^n= (3^n) (3 - 3^-1) / (2x3^n)= (3 - 3^-1) / 2= (3 - 1/3) / 2= (8/3)/2= 4/3
2a) 2^n × 3^n+1 = 3.6^nLHS= (2^n) 3^(n+1)= (2^n) (3^n) (3)= 3 .(2x3)^n = 3 .6^n= RHSb) 2^n × 3^n+1 / 6^n-2By a) ,= (3.6^n) / 6^(n-2)= (3.6^n) / [(6^n)(6^-2)]= 3 / (6^-2)= 3 / (1/36)= 108
2010-08-15 9:31 pm
3^n+1-3^n-1 / 2×3^n
3^n(3)-(3^n)(3^-1)/2x3^n
3^n(3-3^-1)/2x3^n
2又3分2/2
8/6
4/3
______________________
2^n × 3^n+1 = 3.6^n
(2^n/6^n)=3/(3^n+1)
1/3^n.....=3/(3^n)(3)
1/3^n.....=1/3^n
____________________
2^n × 3^n+1 / 6^n-2
2^nx3^n+1= 3.6^n,
________
3.6^n/(6^n)(6^-2)
3/(1/36)
=108


收錄日期: 2021-04-21 22:16:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100815000051KK00496

檢視 Wayback Machine 備份