一元二次方程的計算

2010-08-09 6:31 pm
設方程x^2-7x+3=0的二根為a和b,不解方程,求以下式子的值。

圖片參考:http://imgcld.yimg.com/8/n/HA06399860/o/701008090034813873376570.jpg

回答 (2)

2010-08-09 9:36 pm
✔ 最佳答案
x^2 - 7x + 3 = 0
a + b = 7ab = 3b+(a-b)/(1+ab) = (b+ab^2+a-b)/(1+ab) = a(b^2+1)/(1+ab)1-(a-b)b/(1+ab) = [1+ab-ab+b^2]/(1+ab) = (1+b^2)/(1+ab)[b+(a-b)/(1+ab)]/1-(a-b)b/(1+ab)] = a
a-(a-b)/(1-ab)=(a-a^2b-a+b)/(1-ab)=b(1-a^2)/(1-ab)1-a(a-b)/(1-ab)=(1-ab-a^2+ab)/(1-ab)=(1-a^2)/(1-ab)[a-(a-b)/(1-ab)]/[1-a(a-b)/(1-ab)]=b
(a - b) / [(a/b - b/a)]= (a - b) / [(a^2 - b^2) / ab]= (a - b)ab / (a + b)(a - b)= ab / (a + b)= 3/7
2010-08-09 9:23 pm
perfect answer .

2010-08-09 14:12:37 補充:
Oh ! I see .


收錄日期: 2021-04-13 17:25:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100809000051KK00348

檢視 Wayback Machine 備份