解三角形六題

2010-08-08 9:52 pm
已設△ABC, ∠A所對的邊為a,∠B所對的邊為b,∠C所對的邊為c。
1. △ABC中,∠A=105°,∠B=60°,c=4,求∠C,a,b。
2. △ABC中,a=(√3)+1,b=√2,c=2,求∠A,∠B,∠C。
3. △ABC中,a=x^2+x+1,b=x^2-1,c=2x+1,求其最大角之度數。
4. △ABC中,b=5,c=3,∠A=120°,求a,∠B,∠C。
5. △ABC中,b=(2√3),c=(3√2),∠C=60°,求a,∠A,∠B。
6. △ABC中,∠A=15°,a=3-(√3),b=3+(√3),求c,∠B,∠C。

回答 (1)

2010-08-09 12:37 am
✔ 最佳答案
1. △ABC中,∠A=105°,∠B=60°,c=4,求∠C,a,b。

Sol.
∠C = 180°-105°-60° = 15° (∠sum of △)
a/sin ∠A = c/sin ∠C (sine law)
a/sin 105° = 4/sin 15°
a = 14.9, corr. to 3 sig. fig.

b/sin ∠B = c/sin ∠C (sine law)
b/sin 60° = 4/sin 15°
b = 13.4, corr. to 3 sig. fig.


2. △ABC中,a=(√3)+1,b=√2,c=2,求∠A,∠B,∠C。

Sol.
a^2 = b^2 + c^2 - 2bc cos ∠A (cosine law)
[(√3)+1]^2 = (√2)^2 + 2^2 - 2(√2)(2) cos ∠A
∠A = 105°

b^2 = a^2 + c^2 - 2ac cos ∠B (cosine law)
(√2)^2 = [(√3)+1]^2 + 2^2 - 2[(√3)+1](2) cos ∠B
∠B = 30°

∠C = 180°-105°-30° = 45° (∠sum of △)


3. △ABC中,a=x^2+x+1,b=x^2-1,c=2x+1,求其最大角之度數。

Sol.
From b, x must be greater than 1.
Thus, a is the longest.
Thus, ∠A is largest. (greater side, greater ∠)
cos ∠A = (a^2 - b^2 - c^2) / (-2bc) (cosine law)
= [(x^2+x+1)^2 - (x^2-1)^2 - (2x+1)^2] / -2(x^2-1)(2x+1)
= -1/2
∠A = 120°


4. △ABC中,b=5,c=3,∠A=120°,求a,∠B,∠C。

Sol.
a^2 = b^2 + c^2 - 2bc cos ∠A (cosine law)
a^2 = 5^2 + 3^2 - 2(5)(3) cos 120°
a = 7

a/sin ∠A = b/sin ∠B (sine law)
7/sin 120° = 5/sin ∠B
∠B = 38.2°, corr. to 3 sig. fig.

a/sin ∠A = c/sin ∠C (sine law)
7/sin 120° = 3/sin ∠C
∠C = 21.8°, corr. to 3 sig. fig.


5. △ABC中,b=(2√3),c=(3√2),∠C=60°,求a,∠A,∠B。

Sol.
c/sin ∠C = b/sin ∠B (sine law)
3√2/sin 60° = 2√3/sin ∠B
∠B = 45°

∠A = 180° - 60° - 45° = 75°

c/sin ∠C = a/sin ∠A (sine law)
3√2/sin 60° = a/sin 75°
a = 4.73, corr. to 3 sig. fig.


6. △ABC中,∠A=15°,a=3-(√3),b=3+(√3),求c,∠B,∠C。

Sol.
a/sin ∠A = b/sin ∠B (sine law)
[3-(√3)] /sin15° = [3+(√3)] /sin ∠B
∠B = 75°

∠C = 180° - 15° - 75° = 90°

c^2 = a^2 + b^2 (Pyth. theorem)
= [3-(√3)]^2 + [3+(√3)]^2
c = 4.90, corr. to 3 sig. fig.
參考: 希望幫到你.


收錄日期: 2021-04-13 17:25:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100808000051KK00645

檢視 Wayback Machine 備份