Definite integration

2010-08-08 5:23 am
(a) If f(-x) = -f(x) for all values of x, show that ∫[a~-a] f(x) dx = 0 for any constant a.
(b) Hence evaluation ∫[3~-3] │x│sin x^3 dx.
更新1:

(b) Hence evaluate ∫[3~-3] │x│sin x^3 dx

回答 (1)

2010-08-08 5:51 am
✔ 最佳答案
(a) If f(-x)=-f(x) for allvalues of x, show that ∫[a~-a]f(x)dx=0 for any constant a.
Sol
∫[a~0]f(x)dx
Set y=-x
dx=-dy
∫[a~0] f(x)-dx
=∫[-a~0] f(-y)-dy
=∫[-a~0][-f(y)]-dy
=∫[-a~0]f(y)dy
=-∫[0~-a] f(y) dy
=-∫[0~-a] f(x) dx
So
∫[a~-a] f(x) dx
= ∫[a~0] f(x) dx+ ∫[0~-a] f(x) dx
=-∫[0~-a] f(x) dx+∫[0~-a] f(x) dx
=0

(b) Hence evaluation ∫[3~-3] │x│Sin x^3 dx.
Sin^3 (-x)=(-Sinx)^3=-Sin^3 x
Set g(x)=|x|Sin^3 x
g(-x)=|-x|Sin^3 (-x)=-|x|Sin^3 (x)=-g(x)
∫[3~-3] |x|Sin x^3 dx.=0




收錄日期: 2021-04-23 18:31:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100807000051KK01456

檢視 Wayback Machine 備份