數學兩題:分數相加

2010-08-02 10:14 pm
1. (1/2)+(2/2^2)+(3/2^3)+(4/2^4)+(5/2^5)+......+(99/2^99)=?
2. (2/7)+(2/7^2)+(2/7^3)+(2/7^4)+(2/7^5)+........................=?

回答 (1)

2010-08-02 11:08 pm
✔ 最佳答案
1.
S = 1/2 + 2/2² + 3/2³ + 4/2⁴ + …… + 99/2⁹⁹
S = 1/2 + (2/2² + 3/2³ + 4/2⁴ + …… + 99/2⁹⁹) ... [1]

S/2 = 1/2² + 2/2³ + 3/2⁴ + …… + 98/2⁹⁹ + 99/2¹⁰⁰
S/2 = (1/2² + 2/2³ + 3/2⁴ + …… + 98/2⁹⁹) + 99/2¹⁰⁰ … [2]

[*] - [#]:
S/2 = 1/2 + (1/2² + 1/2³ + 1/2⁴ + …… + 1/2⁹⁹) - 99/2¹⁰⁰
S = 1 + (1/2 + 1/2² + 1/2³ + …… + 1/2⁹⁸) - 99/2⁹⁹ … [3]

1/2 + 1/2² + 1/2³ + …… + 1/2⁹⁸ 是等比級數的和:
首項 a = 1/2
公比 r = 1/2
項數 n = 98
1/2 + 1/2² + 1/2³ + …… + 1/2⁹⁸ = a(1 - rⁿ)/(1 - r)
1/2 + 1/2² + 1/2³ + …… + 1/2⁹⁸ = (1/2)[1 - (1/2)⁹⁸]/[1 - (1/2)]
1/2 + 1/2² + 1/2³ + …… + 1/2⁹⁸ = 1 - 1/2⁹⁸ ... [4]

[4] 代入 [3]:
S = 1 + 1 - 1/2⁹⁸ - 99/2⁹⁹
S = 2 - 2/2⁹⁹ - 99/2⁹⁹
S = 2 - 101/2⁹⁹

答:1/2 + 2/2² + 3/2³ + 4/2⁴ + …… + 99/2⁹⁹ = 2 - 101/2⁹⁹


==========
2/7 + 2/7² + 2/7³ + 2/7⁴ + 2/7⁵ + …… 是等比級數的無限項和

首項 a = 2/7
公比 r = 1/7

2/7 + 2/7² + 2/7³ + 2/7⁴ + 2/7⁵ + ……
= a/(1 - r)
= (2/7)/[1 - (1/7)]
= (2/7)/(6/7)
= 1/3

答:2/7 + 2/7² + 2/7³ + 2/7⁴ + 2/7⁵ + …… = 1/3
參考: bin_2630


收錄日期: 2021-04-13 17:24:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100802000015KK04384

檢視 Wayback Machine 備份