✔ 最佳答案
首先, 將各自的點設如下:
圖片參考:
http://i388.photobucket.com/albums/oo325/loyitak1990/Jul10/Crazygeom1.jpg
如未能見, 請瀏覽:
http://i388.photobucket.com/albums/oo325/loyitak1990/Jul10/Crazygeom1.jpg
即:
D, F, H 和 J 為各自圓心.
E, G, I 和 K 為 AC 與各圓的接觸點.
另設: r1 為第二圓半徑, r2 為第三圓半徑, ∠EAD = θ 和 AD = x
由切線性質可知:
△ADE ~ △AGF ~ △AIH ~ △AKJ ~ △ALC
由於 △AED ~ △AGF:
AF/AD = GF/ED
(x + 8 + r1)/x = r1/8
(x + 8)/x + r1/x = r1/8
r1(1/8 - 1/x) = (x + 8)/x
r1(x - 8)/(8x) = (x + 8)/x
r1 = 8(x + 8)/(x - 8)
由於 △AED ~ △AIH:
AH/AD = IH/ED
(x + 2r1 + r2)/x = r2/8
(x + 2r1 + 8)/x + r2/x = r2/8
r2(1/8 - 1/x) = (x + 2r1 + 8)/x
r2(x - 8)/(8x) = (x + 2r1 + 8)/x
r2 = 8(x + 2r1 + 8)/(x - 8)
= 8{x + 8 + 2[8(x + 8)/(x - 8)]}/(x - 8)
= 8[(x + 8)(x - 8) + 16(x + 8)]/(x - 8)2
= 8(x2 + 16x + 64)/(x - 8)2
= 8(x + 8)2/(x - 8)2
由於 △AED ~ △AKL, 以相同手法可得出:
27 = 8(x + 8)3/(x - 8)3
3 = 2(x + 8)/(x - 8)
3x - 24 = 2x + 16
x = 40
所以, sin θ = 8/40 = 1/5
AJ sin θ = 27
AJ = 135
AL = 135 + 27 = 162
cos θ = (2√6)/5
tan θ = 1/(2√6)
LC = AL tan θ = 162/(2√6) = 81/√6
BC = 162/√6
所以 △ABC 面積為:
BC x AL/2 = 81 x 162/√6
= 81 x 27√6
= 2187√6
即 p 最大可能值為 2187