Mathematics(Help.......plz)

2010-07-29 6:00 am
Expand (a - b)(a+ b)(a^2 + b^2)(a^4 + b^4)(a^8 +b^8)(a^16 + b^16).......(a^1024 + b^1024)


---------------------------> Briefly explain how you get the answer.
更新1:

Im very sure that the question is : Expand (a - b)(a+ b)(a^2 + b^2)(a^4 + b^4)(a^8 +b^8)(a^16 + b^16).......(a^1024 + b^1024) Briefly explain how you get the answer.

回答 (3)

2010-07-29 7:55 am
✔ 最佳答案
Expand
(a - b)(a b)(a^2 - b^2)(a^4 - b^4)(a^8 - b^8)(a^16 - b^16).......(a^1024 - b^1024)

Since,
(a-b)(a b) = a^2 b^2
Then,
(a^2 b^2)(a^2 - b^2) = (a^2)^2 (b^2)^2 = a^4 b^4
Therefore,
(a^1024 b^1024)(a^1024 - b^1024) = (a^1024)^2 (b^1024)^2 = a^2048 b^2048

So, the answer should be a^2048 b^2048


Hope that it could be helpful.

2010-07-30 21:06:08 補充:
唔好意思由於電腦出現了小問題,之前打的答案少咗D符號。

Since,
(a-b)(a+b) = a^2 + b^2
Then,
(a^2 + b^2)(a^2 - b^2) = (a^2)^2 + (b^2)^2 = a^4 + b^4
Therefore,
(a^1024 + b^1024)(a^1024 - b^1024) = (a^1024)^2 + (b^1024)^2 = a^2048 + b^2048

So, the answer should be a^2048 + b^2048

希望以上的解釋對你有幫助~
參考: knowledge
2010-07-29 6:17 am
a^2048 - b^2048
2010-07-29 6:10 am
Are you sure the question is right? I think the question should be:

(a - b)(a+ b)(a^2 - b^2)(a^4 - b^4)(a^8 - b^8)(a^16 - b^16).......(a^1024 - b^1024)

If that's the case, then it is easy because:

(a-b)(a+b) = a^2 + b^2
(a^2 + b^2)(a^2 - b^2) = a^4 + b^4
.
.
.
(a^1024 + b^1024)(a^1024 - b^1024) = a^2048 + b^2048

Answer is a^2048 + b^2048.


收錄日期: 2021-04-23 20:45:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100728000051KK01983

檢視 Wayback Machine 備份