Taylor's Series

2010-07-25 8:01 am
http://i707.photobucket.com/albums/ww74/stevieg90/12-15.jpg
更新1:

I want to know how to choose a suitbale (x,y) to estimate cos(0.9pi)~

更新2:

So which ans can I choose?? cos(0.9π) = - 0.95105... ?? I am confused because when choosing different (h,k), cos(0.9pi) can have many ans...>

回答 (3)

2010-07-25 8:51 am
✔ 最佳答案
f = cos(3xy) = -1
fx = - 3y sin(3xy) = 0
fy = - 3x sin(3xy) = 0
fxx = - 9y^2 cos(3xy) = π
fyy = - 9x^2 cos(3xy) = 9
fxy = fyx = - 9xy cos(3xy) = 3π

f(x+h, y+k) = f(x, y) + 1/2 [fxx h^2 + 2 fxy hk + fyy k^2] + ...
f(1+h, π/3+k) = -1 + 1/2 [πh^2 + 6πhk + 3πk^2] + ...

Choose h = 0, k = - π/30, then f(1, π/3 - π/30) = cos(0.9π)
cos(0.9π) ~ -1 + 1/2 [3π(π/30)^2] = -1 + π^3 / 600 = - 0.948

Choose h = - 0.1, k = 0, then f(0.9, π/3) = cos(0.9π)
cos(0.9π) ~ -1 + 1/2 [0.01π] = -1 + 0.005π = - 0.984...

cos(0.9π) = - 0.951...

2010-07-25 00:54:21 補充:
Correction:

fxx = - 9y^2 cos(3xy) = π^2

f(1+h, π/3+k) = -1 + 1/2 [π^2 h^2 + 6πhk + 3πk^2] + ...

Choose h = - 0.1, k = 0, then f(0.9, π/3) = cos(0.9π)
cos(0.9π) ~ -1 + 1/2 [0.01π^2] = -1 + 0.005π^2 = - 0.95065...

cos(0.9π) = - 0.95105...

2010-07-25 16:37:00 補充:
其實好多組數字都可以係答案,冇話一定得一個,
如果單以上面兩組數字黎睇,後一組好似好D...
睇下邊個答案計完出黎個誤差比較細D就得。
2010-07-25 8:19 am
但是計出來的答案好像與真確值差很遠...
不如你將整個做法做一次~
2010-07-25 8:16 am
函數是 cos(3xy)
不是讓 x = 1, y = pi/3 就好了嗎?


收錄日期: 2021-04-22 00:34:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100725000051KK00004

檢視 Wayback Machine 備份