3^2+6^2+9^2+...+30^2.

2010-07-17 4:23 am
(a) prove by mathematical induction that 1^2 +2^2 +3^2 +...+n^2
=n(n+1)(2n+1)/6

(b) hence, evaluate 3^2+6^2+9^2+...+30^2.


我識做a ,但係吾識點運用到a去做b,,所以淨係做b就得嫁啦

回答 (4)

2010-07-17 4:44 am
✔ 最佳答案
3^2 + 6^2 + 9^2 + ...... + 30^2
= (3 x 1)^2 + (3 x 2)^2 + (3 x 3)^2 + ....... + ( 3 x 10)^2
= 3^2[1^2 + 2^2 + 3^2 + .... + 10^2]
= (9)(10)(10 + 1)(20 + 1)/6 = (9)(10)(11)(21)/6 = (3)(5)(11)(21) = 3465.
2010-07-17 6:03 am
(b) 將每個term抽3^2出黎 done
2010-07-17 4:32 am
b) 3^2+6^2+9^2...+30^2
=9(1^2 + 2^2=......=10^2)
=9X10X11X21/6
=3465


收錄日期: 2021-04-23 20:43:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100716000051KK01483

檢視 Wayback Machine 備份