工程數學問題求解

2010-07-09 4:42 am

y’= 1 + y/x -(y/x)^2

請善心人士幫個忙,教教吧
更新1:

是 - (y/x)^2 是負號,所以樓下的眼誤,看成正號了

更新2:

To unique living: 我想知道算式是怎麼算的

回答 (4)

2010-07-09 5:06 am
✔ 最佳答案
y' = 1 + y/x + (y/x)^2

dy/dx = 1 + y/x + (y/x)^2

Let u = y/x, y = ux

dy/dx = u + xdu/dx

So, the differential equation becomes:

u + xdu/dx = 1 + u + u^2

xdu/dx = 1 + u^2

Separating variables,

S du/(1 + u^2) = S dx / x

tan^-1u = lnx + C, where C is a constant

tan^-1(y/x) = lnx + C

y/x = tan(lnx + C)

y = x tan(lnx + C)
參考: Prof. Physics
2010-07-09 1:50 pm
明秀 copy連看錯的也一起copy
2010-07-09 6:26 am
題目是-(y/x)^2??

2010-07-08 23:55:15 補充:
ln((x+y)/(x-y))=2lnx+c
2010-07-09 5:11 am
y' = 1 + y/x + (y/x)^2

dy/dx = 1 + y/x + (y/x)^2

Let u = y/x, y = ux

dy/dx = u + xdu/dx

So, the differential equation becomes:

u + xdu/dx = 1 + u + u^2

xdu/dx = 1 + u^2

Separating variables,

S du/(1 + u^2) = S dx / x

tan^-1u = lnx + C, where C is a constant

tan^-1(y/x) = lnx + C

y/x = tan(lnx + C)

y = x tan(lnx + C)
參考: 自己


收錄日期: 2021-04-19 22:51:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100708000015KK08338

檢視 Wayback Machine 備份