3條f.4 maths..!!!(eng pls)20pts

2010-07-07 10:16 pm
Find x.
1. (2^2x+3)+(2^x+1)-1=0

2a. y=tan(180°-θ)[(2sin(180°-θ)cos(-θ)-tan(90°+θ)]
Simplify y.

2b.Find the max. and min. values of the function y.

3. It takes 1hour more for Peter to complete a 24km journey than John to complete a 20km journey.If Peter walks slower than John by 2km/h ,find the speed of each boy.
更新1:

第2條答案唔係呢個!!

更新2:

我都計到呢個 可惜答案.......

更新3:

however ,the answer provided was 2(sinθ)^2 +1... would the answer given by the book incorrect???

回答 (1)

2010-07-07 11:06 pm
✔ 最佳答案
Find x.
1. (2^2x+3)+(2^x+1)-1=0
(2^3)(2^x)^2 + 2(2^x) - 1 = 0
8(2^x)^2 + 2(2^x) - 1 = 0
[4(2^x) - 1] [2(2^x) + 1] = 0
2^x = 1/4 or 2^x = - 1/2 (rejected)
2^x = 2 ^ - 2
x = - 2

2a. y=tan(180°-θ)[(2sin(180°-θ)cos(-θ)-tan(90°+θ)]
Simplify y.
y = (- tanθ) [ 2sinθ cosθ - (- 1 / tanθ) ]
y = (- sinθ / cosθ) [ 2sinθ cosθ + (cosθ / sinθ) ]
y = - 2(sinθ)^2 - 1
2b.Find the max. and min. values of the function y.
Since - 1 =< sinθ =< 1 ,
So 0 =< (sinθ)^2 =< 1 ,
y max. = - 2(0) - 1 = - 1
y min. = - 2(1) - 1 = - 3

3.It takes 1hour more for Peter to complete a 24km journey than John to complete a 20km journey.If Peter walks slower than John by 2km/h ,find the speed of each boy.
Let Peter walks x km/h , then John walks x+2 km/h ,
24/x - 20/(x+2) = 1
24(x+2) - 20x = x(x+2)
4x + 48 = x^2 + 2x
x^2 - 2x - 48 = 0
(x - 8)(x + 6) = 0
x = 8 or x = - 6 (rejected)
Peter walks 8 km/h while John walks 8+2 = 10km/h

2010-07-09 22:51:51 補充:
Corrections :

2a. y=tan(180°-θ) [(2sin(180°-θ)cos(-θ)-tan(90°+θ)]
Simplify y.

y = (- tanθ) [ 2sinθ cosθ - (- 1 / tanθ) ]

y = (- sinθ / cosθ) [ 2sinθ cosθ + (cosθ / sinθ) ]

y = - 2(sinθ)^2 - 1 , (θ =/= 0° , 90° , 180° since tan(180°- 90°), tan(90°+ 0°) ,
tam(90° + 180°) are undefined.

2010-07-09 22:51:57 補充:
2b.Find the max. and min. values of the function y.

Since - 1 =< sinθ =< 1 , but θ =/= 0° , 90° , 180° ,

So - 1 < sinθ < 1 ,

0 < (sinθ)^2 < 1

0 > - 2(sinθ)^2 > - 2

- 1 > - 2(sinθ)^2 - 1 > - 3

- 1 > y > - 3

2010-07-09 22:56:07 補充:
Missing θ =/= 270° since tan(180°-270°) is undefined.

2010-07-09 22:56:59 補充:
So sinθ cann't be - 1 , sorry for my mistakes!

2010-07-09 22:59:22 補充:
y = - 2(sinθ)^2 - 1 , (θ =/= 0° , 90° , 180° , 270°)since tan(180°- 90°), tan(90°+ 0°) ,
tam(90° + 180°) , tan(180°-270°) are undefined.

2010-07-10 14:05:01 補充:
Yes , the answer given by the book incorrect ,

put θ = 45° to

y = tan(180°-45°)[(2sin(180°-45°)cos(-45°)-tan(90°+45°)]

y = tan135° (2sin45° cos45° - tan135°)

y = (- 1) (1 - (-1))

y = - 2

But
2(sin45°)^2 +1 = 2


收錄日期: 2021-04-21 22:12:57
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100707000051KK00718

檢視 Wayback Machine 備份