Trigonometry

2010-07-07 5:50 am
(a) Show that sin^2 nx - sin^2 mx = sin(n+m)x sin(n-m)x
(b) Hence, solve the equation for sin^2 3x - sin^2 2x - sinx = 0
for 0 ≤ x ≤ π

回答 (1)

2010-07-07 7:52 am
✔ 最佳答案




(a) Show that Sin^2 nx-Sin^2 mx = Sin(n+m)x
Sin(n-m)x

Sol

Sin(n+m)x Sin(n-m)x

=(SinnxCosmx+CosnxSinmx)(SinnxCosmx-CosnxSinmx)

=Sin^2 nxCos^2 mx-Cos^2 nxSin^2 mx

=Sin^2 nx(1-Sin^2 mx)-(1-Sin^2 nx)Sin^2 mx

=Sin^2 nx-Sin^2 nxSin^2 mx-Sin^2
mx+Sin^2 nxSin^2 mx

=Sin^2 nx-Sin^2 mx



(b) Hence,solve the equation for Sin^2 3x-Sin^2 2x-Sinx = 0

for 0 <=x<=π

Sol

Sin^2 nx-Sin^2 mx = Sin(n+m)x Sin(n-m)x

So

Sin^2 3x-Sin^2 2x=Sin5xSinx

Sin^2 3x-Sin^2 2x-Sinx = 0

Sin5xSinx-Sinx=0

Sinx(Sin5x-1)=0

Sinx=0 or Sin5x=1

0 <=x<=π

(1) Sinx=0

x=0 or x=π

(2) 0<=5x<=5π

Sin5x=1

5x=π/2 or 5x=5π/2 or 5x=9π/2

x=π/10 or x=π/2
or x=9π/10







收錄日期: 2021-04-23 18:27:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100706000051KK01782

檢視 Wayback Machine 備份