✔ 最佳答案
a)Since 2(x^2+y^2)-(x+y)^2 = (x-y)^2 >=0
therefore Å2(x^2+y^2) >= x+y -----(1)
and since (x+y)^2 >= (x+y)^2 -(x-y)^2 = 4xy
therefore x+y >=2Åxy ----(2)
from (1) and (2), we have
Å2(x^2+y^2) >= x+y>= 2Åxy
b)
i) since Å2(x^2+y^2) >= x+y
put x=a and y=b, we have Å2(a^2+b^2) >= a+b -----(3)
put x=b and y=c, we have Å2(b^2+c^2) >= b+c -----(4)
put x=c and y=a, we have Å2(c^2+a^2) >= c+a ------(5)
(3)+(4)+(5), we have
Å2(a^2+b^2) +Å2(b^2+c^2) +Å2(c^2+a^2) >= 2(a+b+c)
dividing both sides by Å2
Å(a^2+b^2) +Å(b^2+c^2) +Å(c^2+a^2) >=Å2(a+b+c)
ii) since x+y>= 2Åxy
put x=a, y=b, we have a+b>= 2Åab -----(6)
put x=b, y=c, we have b+c>= 2Åbc -----(7)
put x=c, y=a , we have c+a>= 2Åca -----(8)
(6)*(7)*(8), we have
(a+b)(b+c)(c+a)=8abc
希望幫到你!