out 左c 的數學題

2010-07-05 9:10 pm
http://www.glowfoto.com/static_image/04-234116L/4975/gif/07/2010/img4/glowfoto
( 條數)


The total number of pairs of integers (x,y) which satisfy the equation:
X^2-4xy+5y^2+2y-4=0 is_____________.
Ans: 8
想知點樣計呢類型ge 數

回答 (1)

2010-07-05 9:21 pm
✔ 最佳答案
X^2-4xy+5y^2+2y-4=0
(x^2 - 4xy + 4y^2) + y^2 + 2y - 4 = 0
(x - 2y)^2 + (y^2 + 2y + 1) - 5 = 0
(x - 2y)^2 + (y + 1)^2 = 5

Let M = x - 2y , N = y + 1 ,

M^2 + N^2 = 5

M = +/-1 , N = +/- 2
2 x 2 = 4 pairs of (x,y)
or
M = +/-2 , N = +/-1
2 x 2 = 4 pairs of (x,y)
Total = 4 + 4 = 8 pairs of (x,y)


收錄日期: 2021-04-21 22:15:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100705000051KK00502

檢視 Wayback Machine 備份