S.4~ TRIGO. QUESTION!! HELP~

2010-07-05 1:59 am
Given that 0˚≦x≦360˚

(a) Find the maximum value of (3-2sinx) and its corresponding measure of x.

(b) Find the minimum value of (3+2sinx) and its corresponding measure of x.

(c) Find the maximum value of 3-2sinx/3+2sinx.

answer:
(a) 5, 270˚
(b) 1, 270˚
(c) 5

回答 (2)

2010-07-05 7:00 am
✔ 最佳答案




Given
that 0˚<=x<=360˚

(a) Find the maximum value of (3-2sinx) and its corresponding measure of x.

-1<=Sinx<=1

-1<=-sinx<=1

-2<=-2Sinx<=2

3-2<=3-2Sinx<=3+2

1<=3-2Sinx<=5

when mmax 5=3+2Sinx

Sinx=1

x=90˚

So max=5,x=90˚



(b) Find the minimum value of (3+2Sinx) and its corresponding measure of x.

Sol

-1<=Sinx<=1

-2<=2Sinx<=2

3-2<=3+2Sinx<=3+2

1<=3+2Sinx<=5

when min 1=3+2Sinx

Sinx=-1

x=270˚

So min=1,x=270˚



(c) Find the maximum value of (3-2Sinx)/(3+2Sinx)

Sol

A=(3-2Sinx)/(3+2Sinx)

3A+2ASinx=3-2Sinx

(2A+2)Sinx=3-3A

Sinx=(3-3A)/(2A+2)

|(3-3A)/(2A+2)|<=1

|3-3A|<=|2A+2|

9A^2-18A+9<=4A^2+8A+4

5A^2-26A+5<=0

(A-5)(5A-1)<=0

(A-5)(A-1/5)<=0

1/5<=A<=5

max=5







2010-07-13 15:56:39 補充:
(c) Find the maximum value of (3-2sinx)/(3+2sinx)
when sinx=1
(3-2sinx)/(3+2sinx)=1/5
So min<>1
.
2010-07-05 2:50 am


a)Find the maximum value of (3-2sinx) and its corresponding measure of x.
0˚≤x≤360˚
-1≤sinx≤1
2≥-2sinx≥-2
5≥3-2sinx≥-3
so the maximum value of (3-2sinx) is 5

(3-2sinx)=5
(-2sinx)=2
sinx=-1
x=180˚+sin-1-1 or x=360˚ - sin-1-1
x=270˚


(b) Find the minimum value of (3+2sinx) and its corresponding measure of x.
0˚≤x≤360˚
-1≤sinx≤1
-2≤2sinx≤2
1≤3+2sinx≤5
so the minimum value of (3+2sinx) is 1

(3+2sinx)=1
(2sinx)=-2
sinx=-1
x=180˚+sin-1-1 or x=360˚ - sin-1-1
x=270˚

(c) Find the maximum value of 3-2sinx/3+2sinx.
1≤3+2sinx≤5
1≥1/(3+2sinx) ≥1/5 FROM b) know 5≥3-2sinx≥-3
1(5) ≥(3-2sinx)/(3+2sinx) ≥5(1/5)
5≥(3-2sinx)/(3+2sinx) ≥1
so the maximum value of 3-2sinx/3+2sinx is5
參考: myself give me the best please


收錄日期: 2021-04-13 17:20:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100704000051KK01105

檢視 Wayback Machine 備份