✔ 最佳答案
Given
that 0˚<=x<=360˚
(a) Find the maximum value of (3-2sinx) and its corresponding measure of x.
-1<=Sinx<=1
-1<=-sinx<=1
-2<=-2Sinx<=2
3-2<=3-2Sinx<=3+2
1<=3-2Sinx<=5
when mmax 5=3+2Sinx
Sinx=1
x=90˚
So max=5,x=90˚
(b) Find the minimum value of (3+2Sinx) and its corresponding measure of x.
Sol
-1<=Sinx<=1
-2<=2Sinx<=2
3-2<=3+2Sinx<=3+2
1<=3+2Sinx<=5
when min 1=3+2Sinx
Sinx=-1
x=270˚
So min=1,x=270˚
(c) Find the maximum value of (3-2Sinx)/(3+2Sinx)
Sol
A=(3-2Sinx)/(3+2Sinx)
3A+2ASinx=3-2Sinx
(2A+2)Sinx=3-3A
Sinx=(3-3A)/(2A+2)
|(3-3A)/(2A+2)|<=1
|3-3A|<=|2A+2|
9A^2-18A+9<=4A^2+8A+4
5A^2-26A+5<=0
(A-5)(5A-1)<=0
(A-5)(A-1/5)<=0
1/5<=A<=5
max=5
2010-07-13 15:56:39 補充:
(c) Find the maximum value of (3-2sinx)/(3+2sinx)
when sinx=1
(3-2sinx)/(3+2sinx)=1/5
So min<>1
.