關於F5 解幾"圓"的問題!

2010-07-03 7:38 pm
1. 經過兩圓 X ^ 2+Y ^ 2 -X+Y=0,圓心在3X+4Y-1=0的圓的方程。

2. 設直綫方程為 X+Y+C=0,圓方程為 X^2+Y^2=1
(1)C滿足什魔條件,所給出的直綫與圓有兩個公共點?

3. 經過兩圓 X^2+Y^2=4和 X^2+Y^2+6X=0的交點,並且過點P(-2,-2),的點的方程。

回答 (1)

2010-07-03 8:53 pm
✔ 最佳答案
Q1. incomplete question

Q2. x+y+c=0 ....(1)
x^2+y^2=1....(2)

from (1), y=-x-c ....(3)
put (3) into (2) , x^2+(-x-c)^2=1
i.e. 2x^2+2cx+(c^2-1)=0 ....(4)

since two distinct point , delta of (4) >0
(2c)^2-4(2)(c^2-1)>0
c^2-2<0
-√2<c<√2

Q3. Let the required circle be:
x^2+y^2-4+K(x^2+y^2+6x)=0 (where K is constant and not equal -1) ...(1)
since (-2,-2) on (1)
put (-2,-2) on (1)
we get 4+4-4+K(4+4-12)=0
K=1
the the required circle be x^2+y^2+3x-2=0


收錄日期: 2021-04-19 22:41:01
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100703000051KK00436

檢視 Wayback Machine 備份