2D-geometry Maths problem!!!!!

2010-07-02 4:49 am
The parabola y=-x^2 has two tagents which connect at point P, located on line y=-x+1. Find the x-coordinate of point p for which the area, S , enclosed by the line connecting the two tagent points and the parabola, is at a min.

回答 (2)

2010-07-03 4:37 am
✔ 最佳答案
ans. P(1/2, 1/2)

2010-07-02 20:37:03 補充:
設P(t, 1-t),過P作x^2+y=0之兩切線L1, L2得兩切點分別為A(x1,y1),B(x2,y2), 則
AB直線為L3: tx+(y+1-t)/2=0 or 2tx+y+1-t=0 (m=-2t)
AB兩點為L3與 x^2+y=0之交點, 2tx-x^2+1-t=0 or x^2-tx+t-1=0
AB^2=(x1-x2)^2+(y1-y2)^2=(1+4t^2)(x1-x2)^2=(1+4t^2)[(x1+x2)^2-4x1x2]
AB^2=(1+4t^2)(4t^2-4t+4)=4(1+4t^2)(t^2-t+1)

d(P,L3)=2(t^2-t+1)/√(1+4t^2)

AB直線斜率=-2t, 故Q(t, -t^2)為AB弧線上與L3距離最遠之點
(滿足M.V.T.之點), d(Q,L3)=(t^2-t+1)/√(1+4t^2)
故L3與拋物線所圍面積=(4/3)*∆QAB=(4/3)*(t^2-t+1)^1.5
(1) ∆QAB面積=0.5*AB*d(Q,L3),
(2) L3與拋物線所圍面積=(4/3)*內接最大∆QAB面積(這是有名性質)

∆PAB面積=0.5*AB*d(P,L3)= 2(t^2-t+1)^1.5

so, 兩切線與拋物線所圍面積=∆PAB-(4/3)∆QAB
= (2- 4/3)*(t^2-t+1)^1.5
=(2/3)[(t-0.5)^2+ 3/4]^1.5
故 t=0.5時, 兩切線與拋物線所圍面積最小
此時 t=0.5, P=(1/2, 1/2), 面積最小=√3 /4

2010-07-02 20:40:52 補充:
不是不寫,只怕寫出來很多人看不懂,還得費神解釋!
若記錯的話,類似題我已寫過,但被刪除了!

2010-07-02 22:37:18 補充:
若沒記錯的話,類似題我已寫過,但被刪除了!
2010-07-02 9:26 pm
天助兄,點解你唔答埋??

2010-07-03 00:59:14 補充:
其實是我想跟天助兄你學習一下而已:D


收錄日期: 2021-04-22 00:48:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100701000051KK01532

檢視 Wayback Machine 備份