Limit

2010-07-01 4:44 am
Without using differentiation, find lim_h->0 [f(x+h) - f(x)]/h when f(x) = 3√x
更新1:

3√x = x^1/3

更新2:

beautiful

回答 (1)

2010-07-01 5:42 am
✔ 最佳答案
lim (h → 0) [f(x + h) - f(x)]/h

= lim (h → 0) [3√(x + h) - 3√x]/h

= lim (h → 0) [3√(x + h) - 3√x][3√(x + h)2 + 3√(x + h)3√x + 3√x2]/{h[3√(x + h)2 + 3√(x + h)3√x + 3√x2]}

= lim (h → 0) [3√(x + h) - 3√x][3√(x + h)2 + 3√(x + h)3√x + 3√x2]/{h[3√(x + h)2 + 3√(x + h)3√x + 3√x2]}

= lim (h → 0) h/{h[3√(x + h)2 + 3√(x + h)3√x + 3√x2]}

= lim (h → 0) 1/[3√(x + h)2 + 3√(x + h)3√x + 3√x2]

Directly sub h = 0, we have:

lim (h → 0) 1/[3√(x + h)2 + 3√(x + h)3√x + 3√x2]

= 1/[3√x2 + 3√x3√x + 3√x2]

= 1/(33√x2)
參考: Myself


收錄日期: 2021-04-23 18:27:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20100630000051KK01436

檢視 Wayback Machine 備份